5 research outputs found

    A Mechanism for Participatory Budgeting With Funding Constraints and Project Interactions

    Full text link
    Participatory budgeting (PB) has been widely adopted and has attracted significant research efforts; however, there is a lack of mechanisms for PB which elicit project interactions, such as substitution and complementarity, from voters. Also, the outcomes of PB in practice are subject to various minimum/maximum funding constraints on 'types' of projects. There is an insufficient understanding of how these funding constraints affect PB's strategic and computational complexities. We propose a novel preference elicitation scheme for PB which allows voters to express how their utilities from projects within 'groups' interact. We consider preference aggregation done under minimum and maximum funding constraints on 'types' of projects, where a project can have multiple type labels as long as this classification can be defined by a 1-laminar structure (henceforth called 1-laminar funding constraints). Overall, we extend the Knapsack voting model of Goel et al. in two ways - enriching the preference elicitation scheme to include project interactions and generalizing the preference aggregation scheme to include 1-laminar funding constraints. We show that the strategyproofness results of Goel et al. for Knapsack voting continue to hold under 1-laminar funding constraints. Although project interactions often break the strategyproofness, we study a special case of vote profiles where truthful voting is a Nash equilibrium under substitution project interactions. We then turn to the study of the computational complexity of preference aggregation. Social welfare maximization under project interactions is NP-hard. As a workaround for practical instances, we give a fixed parameter tractable (FPT) algorithm for social welfare maximization with respect to the maximum number of projects in a group

    Low Sample Complexity Participatory Budgeting

    Get PDF
    We study low sample complexity mechanisms in participatory budgeting (PB), where each voter votes for a preferred allocation of funds to various projects, subject to project costs and total spending constraints. We analyse the distortion that PB mechanisms introduce relative to the minimum-social-cost outcome in expectation. The Random Dictator mechanism for this problem obtains a distortion of 2. In a special case where every voter votes for exactly one project, [Fain et al., 2017] obtain a distortion of 4/3. We show that when PB outcomes are determined as any convex combination of the votes of two voters, the distortion is 2. When three uniformly randomly sampled votes are used, we give a PB mechanism that obtains a distortion of at most 1.66, thus breaking the barrier of 2 with the smallest possible sample complexity. We give a randomized Nash bargaining scheme where two uniformly randomly chosen voters bargain with the disagreement point as the vote of a voter chosen uniformly at random. This mechanism has a distortion of at most 1.66. We provide a lower bound of 1.38 for the distortion of this scheme. Further, we show that PB mechanisms that output a median of the votes of three voters chosen uniformly at random, have a distortion of at most 1.80

    Low Sample Complexity Participatory Budgeting

    Full text link
    We study low sample complexity mechanisms in participatory budgeting (PB), where each voter votes for a preferred allocation of funds to various projects, subject to project costs and total spending constraints. We analyze the distortion that PB mechanisms introduce relative to the minimum-social-cost outcome in expectation. The Random Dictator mechanism for this problem obtains a distortion of 2. In a special case where every voter votes for exactly one project, [Fain et al '17] obtain a distortion of 4/3 We show that when PB outcomes are determined as any convex combination of the votes of two voters, the distortion is 2. When three uniformly randomly sampled votes are used, we give a PB mechanism that obtains a distortion of at most 1.66, thus breaking the barrier of 2 with the smallest possible sample complexity. We give a randomized Nash bargaining scheme where two uniformly randomly chosen voters bargain with the disagreement point as the vote of a voter chosen uniformly at random. This mechanism has a distortion of at most 1.66. We provide a lower bound of 1.38 for the distortion of this scheme. Further, we show that PB mechanisms that output a median of the votes of three voters chosen uniformly at random have a distortion of at most 1.80
    corecore